
Kolokwium 2, grupa 1

27/01/2026

Zadania:
1. Rozwiąż poniższe równanie różniczkowe:

x′′(t) +
3
t
x′(t) +

(
j2 +

1
t2

)
x(t) = 0

Podpowiedź: zastosuj podstawienie x(t) = y(t)/t oraz odpowiednią zamianę zmien-
nych

2. Niech f+ : (0,∞)→ R:

f+(x) =
{
x− π2 , x ­

π
2

0, x < π2

Znajdź nieparzyste rozszerzenie tej funkcji na cały zbiór f : R → R, a następnie
oblicz rozwinięcie f w szereg Fouriera na przedziale [−π, π]

3. Rozwiąż jeden z poniższych punktów (a) lub (b):

(a) Niech zadane będą funkcje:

f(x) = e−xΘ(x), g(x) = Θ(x)Θ(1− x)

policz:
F (f ∗ g)

(b) Dla σ ∈ R, policz F−1
(
φ̂(x) cos (σx)

)
a następnie policz transformację Fouriera

dystrybucji regularnej zadanej przez φ(x) = x cos (x)

4. Dla funkcji lokalnie całkowalnych f, g, j, h ∈ C1 (R;R) oraz a ∈ R policz pochodne
dystrybucji regularnych zadawanych przez nie:

f(x) = Θa(x) := Θ(x− a), a ∈ R
g(x) = h(x)Θa(x)

j(x) =


0, x < −5
1, x ∈ [−5, π)
1 + sin (x), x ∈ [π, 4π)
1 + sin (x) + cos (x), x ­ 4π



Przykładowe rozwiązania grupy 1
1. Stosując podpowiedziane podstawienie otrzymujemy:

x(t) =
y(t)
t

x′(t) =
y′(t)
t
− y(t)
t2

x′′(t) =
y′′(t)
t
− 2y

′(t)
t2
+ 2
y

t3

a zatem podstawiając:

0 = x′′(t) +
3
t
x′(t) +

(
j2 +

1
t2

)
x(t)

=
y′′(t)
t
− 2y

′(t)
t2
+ 2
y

t3
+
3
t

(
y′(t)
t
− y(t)
t2

)
+
(
j2 +

1
t2

)
y(t)
t

=
y′′(t)
t
+
y′(t)
t2
+ j2
y(t)
t

obustronnie · t3

0 = t2y′′(t) + ty′(t) + (jt)2y(t)

Zauważamy, że ostatni człon ma inaczej przedstawioną zmienną, więc spróbujmy
podstawienia ze zmienionym parametrem:

y(t) = z(jt) = z(τ)
y′(t) = j z′(jt) = j z′(τ)
y′′(t) = j2 z′′(jt) = j2 z′′(τ)

otrzymując równanie różniczkowe::

0 = t2j2 z′′(jt) + tj z′(jt) + (jt)2 z(jt) = τ 2z′′(τ) + τz′(τ) + (τ 2 − 02)z(τ)

W ostatniej postaci rozpoznajemy równanie Bessela z parametrem ν = 0. Ponie-
waż jest to liczba całkowita, rozwiązaniami takiego równania są funkcje pierwszego
i drugiego rodzaju. Zatem otrzymujemy rozwiązanie:

z(τ) = c1J0(τ) + c2Y0(τ) = z(jt) = y(t) =⇒

∣∣∣∣∣∣x(t) = c1t J0(jt) + c2t Y0(jt)
∣∣∣∣∣∣

2. Nieparzysta funkcja charakteryzuje się tym, że f(−x) = −f(x), zatem można za-
uważyć, że oczekiwanym rozszerzeniem będzie:

f(x) =


x+ π2 , x ¬ −

π
2

x− π2 , x ­
π
2

0, |x| > π2
Na grafice 1 znajduje się rysunek obu funkcji. Szereg Fouriera na odcinku [−π, π]
zadany jest jako:

f(x) ∼ A0
2
+
∞∑
n=1

(An cos (nx) +Bn sin (nx))



Rysunek 1: Na żółto (przerywane) - funkcja oryginalna f+, na czerwono - jej nieparzyste
rozszerzenie

ze współczynnikami:

An =
1
π

∫ π
−π
f(x) cos (nx)dx

Bn =
1
π

∫ π
−π
f(x) sin (nx)dx

Zauważamy, że nasza funkcja jest nieparzysta, zatem współczynniki An będą wszyst-
kie równe zero - cosinus jest funkcją parzystą, funkcja parzysta razy nieparzysta daje
nieparzystą, całka funkcji nieparzystej na przedziale symetrycznym wynosi zero.
Obliczamy zatem współczynniki Bn:

Bn =
1
π

∫ π
−π
f(x) sin (nx)dx

=
2
π

∫ π
0
f(x) sin (nx)dx

=
2
π

∫ π/2
0
0 sin (nx)dx+

2
π

∫ π
π/2

(
x− π
2

)
sin (nx)dx

=
2
π

∫ π
π/2

(
x− π
2

)
sin (nx)dx

Całkując przez części:∫ (
x− π
2

)
sin (nx)dx =

(
x− π
2

)
· − cos (nx)

n
−
∫ − cos (nx)

n
dx

=
(
π

2
− x

) cos (nx)
n

+
sin (nx)
n2



Podstawiając zatem:

Bn = .... =
2
π

(
π

2
− x

) cos (nx)
n

∣∣∣∣∣
x=π

x=π/2

+
2
π

sin (nx)
n2

∣∣∣∣∣
x=π

x=π/2

=
2
π

(
−π
2
cos (nx)
n

− 0
)
+
2
π

0− sin
(
nπ
2

)
n2


= −(−1)

n

n
−
2 sin

(
nπ
2

)
n2π

= −
nπ(−1)n + 2 sin

(
nπ
2

)
n2π

Otrzymujemy zatem szereg:

∣∣∣∣∣∣f(x) ∼ −
∞∑
n=1

nπ(−1)n + 2 sin
(
nπ
2

)
n2π

· sin (nx)

∣∣∣∣∣∣
Na poniższej grafice znajduje się przybliżenie f z zastosowaniem wyliczonego powy-
żej szeregu.

Rysunek 2: Na szaro - funkcja, na czerwono - pierwsze 2 wyrazy szeregu, na żółto-zielono
- pierwsze 4 wyrazy szeregu, na cyjanowo-seledynowo - pierwsze 6 wyrazów szeregu, na
granatowo - pierwsze 8 wyrazów szeregu, na fioletowo - pierwsze 10 wyrazów szeregu.

3. (a) Zadanie można policzyć bezpośrednio, licząc najpierw splot, a potem trans-
formację fourierowską (dłuższa metoda), albo korzystając z twierdzenia, które
mówi że

f̂ ∗ g = f̂ ĝ

. Policzmy zatem oboma metodami:

i. zaczynając od bezpośredniego liczenia, musimy być bardzo uważni na gra-



nice całkowania - ponieważ zależą one od zmiennej zewnętrznej:

f ∗ g(y) = 1√
2π

∫ ∞
−∞
f(y − x)g(x)dx

=
1√
2π

∫ 1
0
f(y − x)dx

=
1√
2π

∫ 1
0
e−(y−x)Θ(y − x)dx

=
e−y√
2π

∫ 1
0
exΘ(y − x)dx

=
e−y√
2π


y ¬ 0 : 0
y ∈ (0, 1] :

∫ y
0 e
xdx

y > 1 :
∫ 1
0 e
xdx

=
e−y√
2π


y ¬ 0 : 0
y ∈ (0, 1] : ey − 1
y > 1 : e− 1

Albo, korzystając z symetrii zbadajmy najpierw granice całkowania:

Θ(y − x) =
{
0 y − x < 0
1 y − x ­ 0 ⇐⇒ y ­ x

Θ(1− (y − x)) =
{
0 1 + x− y < 0
1 1 + x− y ­ 0 ⇐⇒ x ­ y − 1

Θ(y − x)Θ(1 + x− y) =
{
1 y ­ x ­ y − 1
0 x < y − 1 ∨ x > y

Dostajemy zatem całkę:

f ∗ g(y) = 1√
2π

∫ y
y−1
e−xΘ(x)dx

=
1√
2π


y ¬ 0 : x ¬ y ¬ 0 =⇒ Θ(x) = 0 =⇒

∫ y
y−1 e

−xΘ(x)dx = 0
y ∈ (0, 1] : y − 1 ¬ 0 =⇒

∫ y
y−1 e

xΘ(x)dx =
∫ y
0 e
−xdx = 1− e−y

y > 1 :
∫ y
y−1 e

−xdx = e−(y−1) − e−y = e−y(e− 1)

=


y ¬ 0 : 0
y ∈ (0, 1] : 1−e−y√

2π

y > 1 : (e−1)e−y√
2π



Następnie przeprowadźmy transformację Fouriera:

F(f ∗ g)(ω) = 1√
2π

∫ ∞
−∞
f ∗ g(y)e−iωydy

=
1
2π

∫ 1
0
(1− e−y)e−iωydy + e− 1

2π

∫ ∞
1
e−ye−iωydy

=
1
2π
1
−iω
e−iωy

∣∣∣∣y=1
y=0
− 1
2π

1
−(1 + iω)

e−(1+iω)y
∣∣∣∣∣
y=1

y=0

+
e− 1
2π

1
−(1 + iω)

e−(1+iω)y
∣∣∣∣∣
y→∞

y=1

=
1− e−iω

2iωπ
+
e−1e−iω − 1
2π(1 + iω)

+
e− 1
2π
e−1e−iω − 0
1 + iω

=
1− e−iω

2iωπ
+
e−1e−iω − 1 + e−iω − e−1e−iω

2π(1 + iω)

=
1− e−iω

2π · iω · (1 + iω)

(
1 + iω − iω

)

∣∣∣∣∣∣F (f ∗ g) (ω) = e−iω − 1
2π(ω2 − iω)

∣∣∣∣∣∣
ii. Korzystając zaś ze wzmiankowanego wcześniej twierdzenia, musimy poli-

czyć najpierw dwie transformaty:

F(f)(ω) = 1√
2π

∫ ∞
−∞
f(x)e−iωxdx

=
1√
2π

∫ ∞
−∞
e−xΘ(x)e−iωxdx

=
1√
2π

∫ ∞
0
e−(1+iω)xdx

=
1√
2π

1
−(1 + iω)

e−(1+iω)x
∣∣∣∣∣
y→∞

y=0

=
1√

2π(1 + iω)

F(g)(ω) = 1√
2π

∫ ∞
−∞
g(x)e−iωxdx

=
1√
2π

∫ ∞
−∞
Θ(x)Θ(1− x)e−iωxdx

=
1√
2π

∫ 1
0
e−iωxdx

=
1√
2π
1
−iω
e−iωx

∣∣∣∣∣
x=1

x=0

=
1− e−iω

iω
√
2π



A zatem:∣∣∣∣∣∣F (f ∗ g) (ω) = F(f)(ω) · F(g)(ω) = 1√
2π(1 + iω)

· 1− e
−iω

iω
√
2π
=
e−iω − 1
2π(ω2 − iω)

∣∣∣∣∣∣
(b) Transformację odwrotną liczymy bezpośrednio z definicji, korzystając również

z przedstawienia cosinusa poprzez eksponenty: cos (x) = 12(e
ix + e−ix).

F−1
(
φ̂(x) cos (σx)

)
(ω) =

1√
2π

∫ ∞
−∞
φ̂(x) cos (σx)eiωxdx

=
1√
2π

∫ ∞
−∞
φ̂(x)
eiσx + e−iσx

2
eiωxdx

=
1
2
√
2π

∫ ∞
−∞
φ̂(x)eiσxeiωxdx+

1
2
√
2π

∫ ∞
−∞
φ̂(x)e−iσxeiωxdx

=
1
2
√
2π

∫ ∞
−∞
φ̂(x)eix(σ+ω)dx+

1
2
√
2π

∫ ∞
−∞
φ̂(x)eix(−σ+ω)dx

=
1
2
F−1

(
φ̂
)
(ω + σ) +

1
2
F−1

(
φ̂
)
(ω − σ)

a ponieważ F ◦F−1 = id = F−1 ◦ F , φ̂ = F (φ), powyższe równanie upraszcza
się: ∣∣∣∣∣∣F−1

(
φ̂(x) cos (σx)

)
(ω) =

1
2

(
φ(ω + σ) + φ(ω − σ)

)∣∣∣∣∣∣
Powyższy wzór wykorzystamy w dalszej części zadania. Przypomnijmy również,
że dla funkcji ϕ ∈ D zachodzi:

ϕ̂′(ω) = iωϕ̂(ω)

co pozwala nam obliczyć:

T̂φ (ϕ) := Tφ (ϕ̂)

=
∫ ∞
−∞
φ(x)ϕ̂(x)dx

=
∫ ∞
−∞
cos (x)xϕ̂(x)dx

=
∫ ∞
−∞
cos (x)

1
i
ϕ̂′(x)dx

=

√
2π
i
· 1√
2π

∫ ∞
−∞
cos (x)ϕ̂′(x)eix·0dx

=

√
2π
i
F−1

(
cos ·ϕ̂′

)
(0)

=

√
2π
i
· 1
2

(
ϕ′(0 + 1) + ϕ′(0− 1)

)

=

√
2π
2i
(ϕ′(1) + ϕ′(−1))



Tym samym otrzymujemy:
∣∣∣∣∣∣T̂φ(ϕ) =

√
2π
2i
(ϕ′(1) + ϕ′(−1))

∣∣∣∣∣∣
lub, wykorzystując wiedzę z ćwiczeń o pochodnej delty Diracka:

δ′a(ϕ) = −δa(ϕ′) = −ϕ′(a)

otrzymamy wyrażenie:
∣∣∣∣∣∣T̂φ = i

√
2π
2

(
δ′1 + δ

′
−1

) ∣∣∣∣∣∣
4. Pochodna dystrybucji T zdefiniowana jest jako:

T ′(φ) := −T (φ′)

zatem, podstawiając do wzoru:

T ′f (φ) := −Tf (φ′)

= −
∫ ∞
−∞
f(x)φ′(x)dx

= −
∫ ∞
−∞
Θ(x− a)φ′(x)dx

= −
∫ ∞
a
φ′(x)dx

= −φ(x)

∣∣∣∣∣∣
x→∞

x=a

= −(0− φ(a))
= φ(a)

T ′Θ(x−a) = δa

T ′g (φ) := −Tg (φ′)

= −
∫ ∞
−∞
g(x)φ′(x)dx

= −
∫ ∞
−∞
h(x)Θa(x)φ′(x)dx

= −
∫ ∞
a
h(x)φ′(x)dx

= −h(x)φ(x)

∣∣∣∣∣∣
x→∞

x=a

+
∫ ∞
a
h′(x)φ(x)dx

= h(a)φ(a) +
∫ ∞
−∞
h′(x)Θ(x− a)φ(x)dx

= δ(hφ) + Th′·Θa(φ)



zaś korzystając z definicji mnożenia dystrybucji przez funkcję, dla delty Diraca:

h · δa = h(a) · δ(a)

otrzymujemy:
T ′hΘa = h · δa + Th′Θa

Oczywistym jest też, że możemy zacząć od obliczenia T ′g, a następnie postawić
h(x) ≡ 1 aby obliczyć T ′f .

Do obliczenia pochodnej dystrybucyjnej dla j skorzystamy z tego, że dystrybucje
regularne są liniowe względem zadającej je funkcji:

∀ξ, ζ ∈ L1loc, ∀α, β ∈ R : Tαξ+βζ = αTξ + βTζ

oraz że pochodna również jest liniowa:

(αT1 + βT2)′(φ) = −(αT1 + βT2)(φ′) = −αT1(φ′)− βT2(φ′) = αT ′1(φ) + βT ′2(φ)

Spostrzegamy bowiem, że:

j(x) = Θ−5(x) + sin (x)Θπ(x) + cos (x)Θ4π(x)

stąd:

T ′j =
(
TΘ−5 + Tsin · Θπ + Tcos · Θ4π

)′
= T ′Θ−5 + T

′
sin · Θπ + T

′
cos · Θ4π

= δ−5 + sin (π)δπ + Tcos · Θπ + cos (4π)δ4π − Tsin · Θ4π

Korzystając zaś z tego, że sin (π) = 0, cos (4π) = 1 otrzymujemy:

∣∣∣∣∣∣T ′j = δ−5 + Tcos · Θπ + δ4π − Tsin · Θ4π
∣∣∣∣∣∣



Kolokwium 2, grupa 2

27/01/2026

Zadania:
1. Rozwiąż poniższe równanie różniczkowe:

t2x′′(t) + 2tx′(t) +
(
9t2 +

1
4

)
x(t) = 0

Podpowiedź: zastosuj podstawienie x(t) = y(t)/
√
t oraz odpowiednią zamianę zmien-

nych

2. Niech f+ : (0,∞)→ R:

f+(x) =
{
π
2 − x, x ¬

π
2

0, x > π2

Znajdź nieparzyste rozszerzenie tej funkcji na cały zbiór f : R → R, a następnie
oblicz rozwinięcie f w szereg Fouriera na przedziale [−π, π]

3. Rozwiąż jeden z poniższych punktów (a) lub (b):

(a) Niech zadane będą funkcje:

f(x) = e−|x|, g(x) = Θ(−x)Θ(x+ 1)

policz:
F (f ∗ g)

(b) Oblicz F (φ′) a następnie policz transformację Fouriera dystrybucji regularnej
zadanej przez φ(x) = xeix

4. Dla funkcji lokalnie całkowalnych f, g, j, h ∈ C1 (R;R) oraz a ∈ R policz pochodne
dystrybucji regularnych zadawanych przez nie:

f(x) = Θa(x) := Θ(x− a), a ∈ R
g(x) = h(x)Θa(x)

j(x) =


0, x < −5
1, x ∈ [−5,−2)
1 + x, x ∈ [−2, 4π)
1 + x+ cos (x), x ­ 4π



Przykładowe rozwiązania grupy 2
1. Stosując podpowiedziane podstawienie otrzymujemy:

x(t) = y(t)t−1/2

x′(t) = y′(t)t−1/2 − 1
2
y(t)t−3/2

x′′(t) = y′′(t)t−1/2 − y′(t)t−3/2 + 3
4
y(t)t−5/2

a zatem podstawiając:

0 = t2x′′(t) + 2tx′(t) +
(
9t2 +

1
4

)
x(t)

= t2
(
y′′(t)t−1/2 − y′(t)t−3/2 + 3

4
y(t)t−5/2

)
+ 2t

(
y′(t)t−1/2 − 1

2
y(t)t−3/2

)
+
(
9t2 +

1
4

)
y(t)t−1/2

= y′′(t)t3/2 − y′(t)t1/2 + 3
4
y(t)t−1/2 + 2y′(t)t1/2 − y(t)t−1/2 + 9y(t)t3/2 + 1

4
y(t)t−1/2

= y′′(t)t3/2 + y′(t)t1/2 + 9t3/2y(t)

obustronnie · t1/2

0 = t2y′′(t) + ty′(t) + 9t2y(t)

Zauważamy, że ostatni człon ma inaczej przedstawioną zmienną, więc spróbujmy
podstawienia ze zmienionym parametrem:

y(t) = z(3t) = z(τ)
y′(t) = 3z′(3t) = 3z′(τ)
y′′(t) = 9z′′(3t) = 9z′′(τ)

otrzymując równanie różniczkowe::

0 = 9t2 z′′(3t) + 3t z′(3t) + (3t)2 z(3t) = τ 2z′′(τ) + τz′(τ) + (τ 2 − 02)z(τ)

W ostatniej postaci rozpoznajemy równanie Bessela z parametrem ν = 0. Ponie-
waż jest to liczba całkowita, rozwiązaniami takiego równania są funkcje pierwszego
i drugiego rodzaju. Zatem otrzymujemy rozwiązanie:

z(τ) = c1J0(τ) + c2Y0(τ) = z(3t) = y(t) =⇒

∣∣∣∣∣∣x(t) = c1√tJ0(3t) + c2√tY0(3t)
∣∣∣∣∣∣

2. Nieparzysta funkcja charakteryzuje się tym, że f(−x) = −f(x), zatem można za-
uważyć, że oczekiwanym rozszerzeniem będzie:

f(x) =


π
2 − x, 0 < x ¬ π2
−π2 − x, −

π
2 ¬ x < 0

0, |x| > π2 ∨ x = 0

Na grafice 3 znajduje się rysunek obu funkcji. Szereg Fouriera na odcinku [−π, π]



Rysunek 3: Na żółto (przerywane) - funkcja oryginalna f+, na czerwono - jej nieparzyste
rozszerzenie

zadany jest jako:

f(x) ∼ A0
2
+
∞∑
n=1

(An cos (nx) +Bn sin (nx))

ze współczynnikami:

An =
1
π

∫ π
−π
f(x) cos (nx)dx

Bn =
1
π

∫ π
−π
f(x) sin (nx)dx

Zauważamy, że nasza funkcja jest nieparzysta, zatem współczynniki An będą wszyst-
kie równe zero - cosinus jest funkcją parzystą, funkcja parzysta razy nieparzysta daje
nieparzystą, całka funkcji nieparzystej na przedziale symetrycznym wynosi zero.
Obliczamy zatem współczynniki Bn:

Bn =
1
π

∫ π
−π
f(x) sin (nx)dx

=
2
π

∫ π
0
f(x) sin (nx)dx

=
2
π

(∫ π/2
0

(
π

2
− x

)
sin (nx)dx+

∫ π
π/2
0 · sin (nx)dx

)

=
2
π

π

2

∫ π/2
0
sin (nx)dx− 2

π

∫ π/2
0
x sin (nx)dx

Kolejne całki to: ∫
sin (nx)dx = −cos (nx)

n
+ C∫

x sin (nx)dx = −x cos (nx)
n

− (−1)
n

∫
cos (nx)dx

= −x cos (nx)
n

+
1
n2
sin (nx) + C



Podstawiając zatem:

Bn = .... = −
cos (nx)
n

∣∣∣∣∣
x=π/2

x=0

− 2
π

sin (nx)
n2

∣∣∣∣∣
x=π/2

x=0

+
2
π

x cos (nx)
n

∣∣∣∣∣
x=π/2

x=0

= − 1
n

(
cos

(
nπ

2

)
− 1

)
− 2
πn2

(
sin

(
nπ

2

)
− 0

)
+
2
nπ

(
π

2
cos

(
nπ

2

)
− 0

)
= − 1
n
cos

(
nπ

2

)
+
1
n
− 2
πn2
sin

(
nπ

2

)
+
1
n
cos

(
nπ

2

)

=
nπ − 2 sin

(
nπ
2

)
n2

Otrzymujemy zatem szereg:

∣∣∣∣∣∣f(x) ∼
∞∑
n=1

nπ − 2 sin
(
nπ
2

)
n2

· sin (nx)

∣∣∣∣∣∣
Na poniższej grafice znajduje się przybliżenie f z zastosowaniem wyliczonego powy-
żej szeregu.

Rysunek 4: Na szaro - funkcja, na czerwono - pierwsze 2 wyrazy szeregu, na żółto-zielono
- pierwsze 4 wyrazy szeregu, na cyjanowo-seledynowo - pierwsze 6 wyrazów szeregu, na
granatowo - pierwsze 8 wyrazów szeregu, na fioletowo - pierwsze 10 wyrazów szeregu.

3. (a) Zadanie można rozwiązać przez bezpośredni rachunek najpierw splotu, następ-
nie zaś transformacji Fouriera, lub z wykorzystaniem twierdzenia o splocie.
Obie metody zostały pokazane w grupie pierwszej, stąd tutaj posłużę się jedy-



nie drugą metodą, aby pokazać poprawny wynik.

F(f)(ω) := 1√
2π

∫ ∞
−∞
f(x)e−iωxdx

=
1√
2π

∫ ∞
−∞
e−|x|e−iωxdx

=
1√
2π

∫ 0
−∞
exe−iωxdx+

1√
2π

∫ ∞
0
e−xe−iωxdx

=
1√
2π

∫ 0
−∞
ex(1−iω)dx+

1√
2π

∫ ∞
0
e−x(1+iω)dx

=
1√
2π
ex(1−iω)

1− iω

∣∣∣∣∣
x=0

x→−∞
− 1√
2π
e−x(1+iω)

1 + iω

∣∣∣∣∣
x→∞

x=0

=
1√
2π
· 1− 0
1− iω

− 1√
2π
· 0− 1
1 + iω

=
1√
2π
· 1 + iω − (−1) (1− iω)

1 + ω2

=
1√
2π
· 2
1 + ω2

F(g)(ω) := 1√
2π

∫ ∞
−∞
g(x)e−iωxdx

=
1√
2π

∫ 0
−1
e−iωxdx

=
1√
2π
· e
−iωx

−iω

∣∣∣∣∣
x=0

x=−1

=
i

ω
√
2π
·
(
1− eiω

)
A zatem, korzystając z twierdzenia o splocie:

F (f ∗ g) (ω) = F(f)(ω) · F(g)(ω)

=
1√
2π
· 2
1 + ω2

· i

ω
√
2π
·
(
1− eiω

)
=
i(1− eiω)
πω(1 + ω2)

∣∣∣∣∣∣F (f ∗ g) (ω) = i(1− e
iω)

πω(1 + ω2)

∣∣∣∣∣∣
(b) Transformację pochodnej liczymy bezpośrednio z definicji, korzystając z faktu



że dla φ ∈ D : limx→±∞ φ(x) = 0:

F(φ′)(ω) = 1√
2π

∫ ∞
−∞
φ′(x)e−iωxdx

=
1√
2π
φ(x)e−iωx

∣∣∣∣∣
x→∞

x→−∞
− 1√
2π

∫ ∞
−∞
φ(x)

∂

∂x

{
e−iωx

}
dx

= 0− 1√
2π

∫ ∞
−∞
φ(x)(−iω)e−iωxdx

= iω · 1√
2π

∫ ∞
−∞
φ(x)e−iωxdx

= iωF(φ)(ω)

otrzymujemy wynik znany już z wykładu:∣∣∣∣∣∣F (φ′) (ω) = iωF(φ)(ω)
∣∣∣∣∣∣

Powyższy wzór wykorzystamy w dalszej części zadania. Przypomnijmy również,
że dla funkcji ϕ ∈ D zachodzi:

ϕ̂′(ω) = iωϕ̂(ω)

co pozwala nam obliczyć:

T̂φ (ϕ) := Tφ (ϕ̂)

=
∫ ∞
−∞
φ(x)ϕ̂(x)dx

=
∫ ∞
−∞
xeixϕ̂(x)dx

=
∫ ∞
−∞
eix
1
i
ϕ̂′(x)dx

=

√
2π
i
· 1√
2π

∫ ∞
−∞
eix·1ϕ̂′(x)dx

=

√
2π
i
F−1

(
ϕ̂′
)
(1)

a ponieważ F ◦F−1 = id = F−1 ◦ F , φ̂ = F (φ), powyższe równanie upraszcza
się: ∣∣∣∣∣∣T̂φ(ϕ) =

√
2π
i
ϕ′(1)

∣∣∣∣∣∣
lub, wykorzystując wiedzę z ćwiczeń o pochodnej delty Diracka:

δ′a(ϕ) = −δa(ϕ′) = −ϕ′(a)

otrzymamy wyrażenie: ∣∣∣∣∣∣T̂φ = i
√
2πδ′1

∣∣∣∣∣∣



4. Rozwiązania dla f, g są jak w grupie 1. Dla j korzystamy również ze wspomnianych
tam liniowości, oraz zauważamy:

j(x) = Θ−5(x) + xΘ−2(x) + cos (x)Θ4π(x)

dla łatwiejszych oznaczeń wprowadźmy funkcję identycznościową id(x) = x, wów-
czas:

T ′j =
(
TΘ−5 + Tid· Θ−2 + Tcos · Θ4π

)′
= T ′Θ−5 + T

′
id· Θ−2 + T

′
cos · Θ4π

= δ−5 − 2δ−2 + TΘ−2 + cos (4π)δ4π − Tsin · Θ4π

Korzystając zaś z tego, że cos (4π) = 1 otrzymujemy:

∣∣∣∣∣∣T ′j = δ−5 − 2δ−2 + TΘ−2 + δ4π − Tsin · Θ4π
∣∣∣∣∣∣



Kolokwium 2, grupa 3

27/01/2026

Zadania:
1. Rozwiąż poniższe równanie różniczkowe:

tx′′(t) + x′(t) +
x(t)
4
= 0

Podpowiedź: zastosuj podstawienie t = s2

2. Niech f+ : (0,∞)→ R:

f+(x) =
{
x− π2 , x ­

π
2

0, x < π2

Znajdź parzyste rozszerzenie tej funkcji na cały zbiór f : R→ R, a następnie oblicz
rozwinięcie f w szereg Fouriera na przedziale [−π, π]

3. Rozwiąż jeden z poniższych punktów (a) lub (b):

(a) Niech zadane będą funkcje:

f(x) = e−|x|, g(x) = Θ(1− x)Θ(x+ 1)

policz:
F (f ∗ g)

(b) Dla σ ∈ R, policz F−1
(
φ̂(x) sin (σx)

)
a następnie policz transformację Fouriera

dystrybucji regularnej zadanej przez φ(x) = x sin (x)

4. Dla funkcji lokalnie całkowalnych f, g, j, h ∈ C1 (R;R) oraz a ∈ R policz pochodne
dystrybucji regularnych zadawanych przez nie:

f(x) = Θa(x) := Θ(x− a), a ∈ R
g(x) = h(x)Θa(x)

j(x) =


0, x < −5
1, x ∈ [−5,−2)
1 + x, x ∈ [−2, 4π)
1 + x+ exp (x), x ­ 4π



Przykładowe rozwiązania grupy 3
1. Niech t = s2, x(s2) = y(s), wówczas:

y′(s) =
d

ds
y(s) =

d

ds
x(s2) = x′(s2) · 2s =⇒ x′(t) = x′(s2) = y

′(s)
2s

y′′(s) =
d2

ds2
y(s) =

d

ds

(
2sx′(s2)

)
= 2x′(s2) + 2s · 2s · x′′(s2) = y

′(s)
s
+ 4tx′′(t)

=⇒ tx′′(t) = 1
4
y′′(s)− 1

4s
y′(s)

co, po podstawieniu do oryginalnego równania różniczkowego, daje:

0 = tx′′(t) + x′(t) +
x(t)
4

=
1
4
y′′(s)− 1

4s
y′(s) +

y′(s)
2s
+
y(s)
4

obustronnie · 4s2

0 = s2y′′(s)− sy′(s) + 2sy′(s) + s2y(s)
= s2y′′(s) + sy′(s) + (s2 − 02)y(s)

w czym rozpoznajemy równanie Bessela z parametrem ν = 0, zatem otrzymujemy
rozwiązanie na y(s):

y(s) = c1J0(s) + c2Y0(s)

zatem, wracając do x(t) = y(
√
t) otrzymujemy ostatecznie:∣∣∣∣∣∣x(t) = c1J0(

√
t) + c2Y0(

√
t)

∣∣∣∣∣∣
2. Parzysta funkcja charakteryzuje się tym, że f(−x) = f(x), zatem można zauważyć,

że oczekiwanym rozszerzeniem będzie:

f(x) =


0, |x| ¬ π2
−π2 − x, x < −

π
2

x− π2 , x > π2

Na grafice 5 znajduje się rysunek obu funkcji. Szereg Fouriera na odcinku [−π, π]
zadany jest jako:

f(x) ∼ A0
2
+
∞∑
n=1

(An cos (nx) +Bn sin (nx))

ze współczynnikami:

An =
1
π

∫ π
−π
f(x) cos (nx)dx

Bn =
1
π

∫ π
−π
f(x) sin (nx)dx

Zauważamy, że nasza funkcja jest parzysta, zatem współczynniki Bn będą wszystkie
równe zero - sinus jest funkcją nieparzystą, funkcja parzysta razy nieparzysta daje



Rysunek 5: Na żółto (przerywane) - funkcja oryginalna f+, na czerwono - jej parzyste
rozszerzenie

nieparzystą, całka funkcji nieparzystej na przedziale symetrycznym wynosi zero.
Obliczamy zatem współczynniki An:

An =
1
π

∫ π
−π
f(x) cos (nx)dx

=
2
π

∫ π
0
f(x) cos (nx)dx

=
2
π

(∫ π/2
0
0 · cos (nx)dx+

∫ π
π/2

(
x− π
2

)
· cos (nx)dx

)

=
2
π

∫ π
π/2
x cos (nx)dx− π

2
2
π

∫ π
π/2
cos (nx)dx

Kolejne całki to, przy założeniu że n ̸= 0:∫
cos (nx)dx =

sin (nx)
n
+ C∫

x cos (nx)dx =
x sin (nx)
n

− 1
n

∫
sin (nx)dx

=
x sin (nx)
n

+
1
n2
cos (nx) + C



Podstawiając zatem:

An = .... =
2
π
· x sin (nx)

n

∣∣∣∣∣
x=π

x=π/2

+
2
π

1
n2
cos (nx)

∣∣∣∣x=π
x=π/2

− sin (nx)
n

∣∣∣∣∣
x=π

x=π/2

=
2
nπ

(
π sin (nπ)− π

2
sin

(
nπ

2

))
+
2
n2π

(
cos (nπ)− cos

(
nπ

2

))
− 1
n

(
sin (nπ)− sin

(
nπ

2

))

= − 1
n
sin

(
nπ

2

)
+
2(−1)n − 2 cos

(
nπ
2

)
n2π

+
1
n
sin

(
nπ

2

)
=
2
n2π

(
(−1)n − cos

(
nπ

2

))
Ponieważ w powyższych obliczeniach musieliśmy wykluczyć n = 0, zatem przepro-
wadzamy obliczenia osobno:

A0 =
1
π

∫ π
−π
f(x) cos (0x)dx

=
1
π

∫ π
−π
f(x)dx

=
2
π

∫ π
0
f(x)dx

=
2
π

∫ π/2
0
0dx+

2
π

∫ π
π/2

(
x− π
2

)
dx

=
2
π

1
2

(
x− π
2

)2∣∣∣∣∣
x=π

x=π/2

=
1
π

(
π

2

)2
=
π

4

Otrzymujemy zatem szereg:
∣∣∣∣∣∣f(x) ∼ π8 + 2π

∞∑
n=1

1
n2

(
(−1)n − cos

(
nπ

2

))
· cos (nx)

∣∣∣∣∣∣
Na poniższej grafice znajduje się przybliżenie f z zastosowaniem wyliczonego powy-
żej szeregu.

3. (a) Zadanie można rozwiązać przez bezpośredni rachunek najpierw splotu, następ-
nie zaś transformacji Fouriera, lub z wykorzystaniem twierdzenia o splocie.
Obie metody zostały pokazane w grupie pierwszej, stąd tutaj posłużę się jedy-



Rysunek 6: Na szaro - funkcja, na czerwono - pierwsze 3 wyrazy szeregu, na żółto-zielono
- pierwsze 5 wyrazy szeregu, na cyjanowo-seledynowo - pierwsze 7 wyrazów szeregu, na
granatowo - pierwsze 9 wyrazów szeregu, na fioletowo - pierwsze 11 wyrazów szeregu.

nie drugą metodą, aby pokazać poprawny wynik.

F(f)(ω) := 1√
2π

∫ ∞
−∞
f(x)e−iωxdx

=
1√
2π

∫ ∞
−∞
e−|x|e−iωxdx

=
1√
2π

∫ 0
−∞
exe−iωxdx+

1√
2π

∫ ∞
0
e−xe−iωxdx

=
1√
2π

∫ 0
−∞
ex(1−iω)dx+

1√
2π

∫ ∞
0
e−x(1+iω)dx

=
1√
2π
ex(1−iω)

1− iω

∣∣∣∣∣
x=0

x→−∞
− 1√
2π
e−x(1+iω)

1 + iω

∣∣∣∣∣
x→∞

x=0

=
1√
2π
· 1− 0
1− iω

− 1√
2π
· 0− 1
1 + iω

=
1√
2π
· 1 + iω − (−1) (1− iω)

1 + ω2

=
1√
2π
· 2
1 + ω2



F(g)(ω) := 1√
2π

∫ ∞
−∞
g(x)e−iωxdx

=
1√
2π

∫ 1
−1
e−iωxdx

=
1√
2π
e−iωx

−iω

∣∣∣∣∣
x=1

x=−1

=
1√
2π
e−iω − eiω

−iω

=
1√
2π
· 2
ω
· e
iω − e−iω

2i

=
2 sin (ω)
ω
√
2π

A zatem, korzystając z twierdzenia o splocie:

F (f ∗ g) (ω) = F(f)(ω) · F(g)(ω)

=
1√
2π
· 2
1 + ω2

· 2 sin (ω)
ω
√
2π

=
2 sin (ω)
πω(1 + ω2)

∣∣∣∣∣∣F (f ∗ g) (ω) = i(1− e
iω)

πω(1 + ω2)

∣∣∣∣∣∣
(b) Transformację odwrotną liczymy bezpośrednio z definicji, korzystając również

z przedstawienia sinusa poprzez eksponenty: sin (x) = 1
2i(e

ixie−ix).

F−1
(
φ̂(x) sin (σx)

)
(ω) =

1√
2π

∫ ∞
−∞
φ̂(x) sin (σx)eiωxdx

=
1√
2π

∫ ∞
−∞
φ̂(x)
eiσx − e−iσx

2i
eiωxdx

=
1
2i
√
2π

∫ ∞
−∞
φ̂(x)eiσxeiωxdx− 1

2i
√
2π

∫ ∞
−∞
φ̂(x)e−iσxeiωxdx

=
1
2i
√
2π

∫ ∞
−∞
φ̂(x)eix(σ+ω)dx− 1

2i
√
2π

∫ ∞
−∞
φ̂(x)eix(−σ+ω)dx

=
1
2i
F−1

(
φ̂
)
(ω + σ)− 1

2i
F−1

(
φ̂
)
(ω − σ)

a ponieważ F ◦F−1 = id = F−1 ◦ F , φ̂ = F (φ), powyższe równanie upraszcza
się: ∣∣∣∣∣∣F−1

(
φ̂(x) sin (σx)

)
(ω) =

1
2i

(
φ(ω + σ)− φ(ω − σ)

)∣∣∣∣∣∣
Powyższy wzór wykorzystamy w dalszej części zadania. Przypomnijmy również,
że dla funkcji ϕ ∈ D zachodzi:

ϕ̂′(ω) = iωϕ̂(ω)



co pozwala nam obliczyć:

T̂φ (ϕ) := Tφ (ϕ̂)

=
∫ ∞
−∞
φ(x)ϕ̂(x)dx

=
∫ ∞
−∞
sin (x)xϕ̂(x)dx

=
∫ ∞
−∞
sin (x)

1
i
ϕ̂′(x)dx

=

√
2π
i
· 1√
2π

∫ ∞
−∞
sin (x)ϕ̂′(x)eix·0dx

=

√
2π
i
F−1

(
sin ·ϕ̂′

)
(0)

=

√
2π
i
· 1
2i

(
ϕ′(0 + 1)− ϕ′(0− 1)

)

= −
√
2π
2
(ϕ′(1)− ϕ′(−1))

Tym samym otrzymujemy:∣∣∣∣∣∣T̂φ(ϕ) =
√
2π
2
(ϕ′(−1)− ϕ′(1))

∣∣∣∣∣∣
lub, wykorzystując wiedzę z ćwiczeń o pochodnej delty Diracka:

δ′a(ϕ) = −δa(ϕ′) = −ϕ′(a)

otrzymamy wyrażenie: ∣∣∣∣∣∣T̂φ =
√
2π
2

(
δ′1 − δ′−1

) ∣∣∣∣∣∣
4. Rozwiązania dla f, g są jak w grupie 1. Dla j korzystamy również ze wspomnianych

tam liniowości, oraz zauważamy:

j(x) = Θ−5(x) + xΘ−2(x) + cos (x)Θ4π(x)

dla łatwiejszych oznaczeń wprowadźmy funkcję identycznościową id(x) = x, wów-
czas:

T ′j =
(
TΘ−5 + Tid· Θ−2 + Tcos · Θ4π

)′
= T ′Θ−5 + T

′
id· Θ−2 + T

′
cos · Θ4π

= δ−5 − 2δ−2 + TΘ−2 + cos (4π)δ4π − Tsin · Θ4π

Korzystając zaś z tego, że cos (4π) = 1 otrzymujemy:∣∣∣∣∣∣T ′j = δ−5 − 2δ−2 + TΘ−2 + δ4π − Tsin · Θ4π
∣∣∣∣∣∣



Lista wzorów

Równanie Bessela

x2y′′(x) + xy′(x) + (x2 − ν2)y(x) = 0

Jν(t) =
∞∑
n=0

(−1)n

n! Γ(1 + ν + n)

(
t

2

)2n+ν
, Yν(t) = lim

ξ→ν

∂
∂ξ
(Jξ(t) cos (πξ)− J−ξ(t))

∂
∂ξ
(sin (πξ))

Γ(x) :=
∫ ∞
0
tx−1e−tdt

Szeregi Fouriera

Szereg Fouriera dla funkcji f na odcinku [a, b]:

f(x) ∼ A0
2
+
∞∑
n=1

(
An cos

(
nπ(2x− b− a)
b− a

)
+Bn sin

(
nπ(2x− b− a)
b− a

))

An =
2
b− a

∫ b
a
f(x) cos

(
nπ(2x− b− a)
b− a

)
dx

Bn =
2
b− a

∫ b
a
f(x) sin

(
nπ(2x− b− a)
b− a

)
dx

Transformacja Fouriera

F(f)(ω) = f̂(ω) := 1√
2π

∫ ∞
−∞
f(x)e−iωxdx

f(x) = F−1
(
f̂
)
(x) :=

1√
2π

∫ ∞
−∞
f̂(ω)eiωxdω

F(f(x) cos (σx))(ω) = 1
2

(
f̂(ω + σ) + f̂(ω − σ)

)
F(f(x) sin (σx))(ω) = 1

2i

(
f̂(ω + σ)− f̂(ω − σ)

)
F(f ′)(ω) = iωF(f)(ω)

(f ∗ g)(x) = 1√
2π

∫ ∞
−∞
f(y)g(x− y)dy



Miejsce na rysunki/szkice
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