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1 Transformata Fouriera

Transformacjg Fouriera F nazywamy odwzorowanie zadane jako:
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Zauwazmy, ze odwzorowuje ono jedna funkcje, f, w inna. W powyzszym wzorze argumen-
tem wyniku jest p. Wynik transformacji Fouriera nazywa si¢ transformata. W wickszosci
fizycznych przypadkow, transformata sama w sobie jest na tyle dobra funkcja, ze mozna
policzy¢ dla niej tzw. transformacje odwrotna i uzyskac:
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I tutaj pewna uwaga - w zaleznosci od preferencji, potrzeb itd., stosuje sie rézne konwen-
cje. W naszym przypadku wybraliémy symetrycznatransformacje/transformacje odwrot-
ng, obie calki sy dzielone przez v/2m. Czasmi jednak ten czynnik jest przeniesiony tylko
na jedna strone (pozostajac wtedy bez pierwiastka), lub wlaczony w eksponente.

Transformacje Fouriera stosuje sie w inzynierii i naukach Scistych. Podstawowym za-
stosowaniem jest to, ze pozwala ona przej$¢ z dziedziny czasu na rozkitad czestotliwo-
Sci. Oznacza to, ze badajac okreslone sygnaty (dzwieki, swiatto itd.) mozemy sprawdzi¢,
jak duzy udzial w calej funkcji maja poszczegolne czestotliwosci.

W przypadku funkeji potozenia, odpowiednikiem czestotliwosci jest liczba falowa - zag
poniewaz mechanika kwantowa nadaje jej sens pedu (z dokladnoscia do stalej), zatem
tranformacja Fouriera umozliwia przejscie pomiezy reprezentacja polozeniowa a pedowa.

2 Transformata Fouriera dystrybucji regularne;j

Niech f bedzie takafunkcja, ze jej transformata Fouriera oraz transformata odwrotna
istnieja;
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Dla (odwrotnej) transformaty Fouriera prawdziwa jest relacja:
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czego dowodzimy bezposrednim rachunkiem na przyktad:
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7, drugiej strony, catka:
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nie jest okreslona dla dowolnego w. Stad wniosek, ze transformata Fouriera funkcji sinus
1 cosinus nie istnieje.

Wiemy juz jednak, ze o ile granice pewnych ciggoéw funkcyjnych nie zbiegaja do zadnej
funkcji, dystrybucje regularne zadane przez te funkcje moga zbiega¢ do innej dystrybucji.
Mowimy wtedy o stabej zbieznosci - i jak widzimy, jest ona pewnym rozszerzeniem zbiezno-
sci funkcji. Podobnie, udalo sie zdefiniowa¢ pochodna dystrybucji, rozszerzajac pochodna
funkcyjna. Nie powinno zatem dziwié¢, ze mozemy réwniez rozszerza¢ inne wlasnosci, takie
jak przeksztatcenie Fouriera. Definiujemy zatem
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za$ dla funkcji, méwimy o transformacji fourierowskiej w sensie dystrybucyjnym, majac
na mysli transformate Fouriera dystrybucji regularnej zadanej przez te funkcje. I takie
operacje bedziemy wykonywac.
Jesli zatem:
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otrzymujemy
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Analogicznie dla funkcji sinus:
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Laczac te dwa wyniki, otrzymamy réwniez:
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3 Intuicja

Wréémy na chwile do szeregéw Fouriera. Dla "wystarczajaco dobrych funkcji", szereg
Fouriera zbiega do oryginalnej funkcji (prawie wszedzie). Oznacza to, ze funkcje moze-
my przedstawi¢ jako (nieskoriczona) sume fal (sinusow i cosinusoéw), cho¢ ograniczona
do pewnego odcinka. Przeksztatcenie Fouriera zachowuje ten sam tok rozumowania, lecz
idzie o krok dalej. Pokazuje ona, ze "odpowiednio dobre funkcje" mozna roztozy¢ w ten
sposob na calej dziedzinie. Placimy za to jednak cene - zmuszeni jestesSmy sumowaé po nie-
przeliczalnym zbioze fal, i to jest wlasnie catka w transformacji odwrotnej. Dodatkowym
aspektem jest to, ze wychodzimy poza funkcje rzeczywiste.

O rozktadzie funkcji na harmonijki zespolone e*“® dobrze $wiadczy dystrybucyjna
transformata Fouriera wtasnie tej funkcji - otrzymujemy peak jednej czestotliwosci= o.
Funkcje trygonometryczne sinus i cosinus sa rowniez doskonalym przyktadem - one jawnie
sg suma dwoch takich harmonijek, i ich dystrybucyjna transformata Fouriera pokazuje
to.

Oczywiscie, jesli chodzi o wizualne, graficzne i koncepcyjne ttumaczenie moge odwotaé
Panstwa dofilmiku https://youtu.be/spUNpyF58BY?si=s1v6GAkAv62qVXNO, na ktorym
Grant Sanderson pokazuje to w bardzo przejrzysty sposob.


https://youtu.be/spUNpyF58BY?si=slv6GAkAv62qVXN0

4 Literatura

Jesli chodzi o literature zwiazana z teoria fourierowska i dystrybucjami, poleci¢ moge:

& Reed, Simon Methods of Modern Mathematical Physics II: Fourier Analysis, Self-
Adjointness - z pewnymi zastosowaniami i odwoltaniem sie do fizyki kwantowej

@  Walter Rudin Functional Analysis - choé jeszcze nie miatem przyjemnosci sam
siegna¢ po te literature, byla mi ona bardzo polecana, podobno autor preferuje
Sciste, matematyczne podejscie.
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