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Pełne obliczenia J1/2
Podczas zajęć przeszliśmy przez obliczenia, krok po kroku pokazując co się zmienia, ja-
kie przekształcenia stosujemy, niemniej chciałbym jeszcze raz przedstawić to państwu, w
pełni.

Przypomnijmy, że wiemy:
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gdyż obliczyliśmy tę wartość korzystając z odpowiedniego podstawienia w całce oraz tri-
ku, polegającego na wykorzystaniu współrzędnych sferycznych. Z szeregu definiującego
funkcje Bessela pierwszego rodzaju rzędu ν:
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zatem, podstawiając ν = 1/2:
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Przechodząc do funkcji Γ(n+ 3/2) w mianowniku:
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Zauważmy teraz, że:
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Podstawiając ten wynik do szeregu:
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z szerego Maclaurina.
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Podsumowanie informacji o funkcjach Bessela

☛ Funkcje Bessela są rozwiązaniami równania różniczkowego:
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☛ Liczba rzeczywista ν ∈ R jest nazywana rzędem równania, a tym samym rzędem
rozwiązania.

☛ Rozwiązując je poprzez podstawienie szeregu (w t = 0, będącym punktem regu-
larnym osobliwym równania), otrzymujemy funkcje pierwszego rodzaju:
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☛ Jeśli ν /∈ Z, wówczas rozwiązania Jν oraz J−ν są liniowo niezależne, ponieważ dla
t→ 0 otrzymujemy:

Jν(t) ∝ tν =⇒
{
ν > 0 =⇒ limt→0 Jν(t) = 0
ν < 0 =⇒ limt→0 Jν(t) =∞

Ogólnym rozwiązaniem jest zatem:

x(t) = c1Jν(t) + c2J−ν(t)

☛ W przypadku, gdy ν ∈ Z, otrzymujemy:

J−ν = (−1)νJν

zatem potrzeba skonstruować drugie rozwiązanie. Okazuje się, że jest nim:

Yν(t) = lim
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∂
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∂
∂η
sin (πη)

a rozwiązanie ma postać:
x(t) = c1Jν(t) + c2Yν(t)

☛ W przypadku nauk fizycznych, funkcje Bessela znajdują zastosowania w rozwiązy-
waniu problemów cylindrycznych lub sferycznych, na przykład: drgania membrany
bębna czy opisywanie częstek kwantowomechanicznych w cylindrycznych studniach
potencjału.

☛ Graficzne porównanie funkcji Bessela znajduje się na grafikach poniżej

Wielomiany Hermite’a

Co prawda na zajęciach funkcje te pojawiły się wyłącznie w obliczeniach z funkcji gene-
rującej, jednak postanowiłem przygotować krótką notatkę również na ich temat.

☛ Równaniem Hermite’a nazwiemy równanie różniczkowe:

d2x

dt2
− 2tdx
dt
+ 2nx = 0
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Rysunek 1: Funkcje Bessela pierwszego rodzaju dla całkowitych rzędów

Rysunek 2: Funkcje Bessela pierwszego rodzaju dla niecałkowitych rzędów

Rysunek 3: Funkcje Bessela drugiego rodzaju

☛ Wielomiany Hermite’a stopnia n są rozwiązaniami wielomianowymi powyższego
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równania. Można je uzyskać dzięki funkcji generującej, poznanej na ćwiczeniach:
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jak również ze wzoru Rodriguesa:
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☛ Podobnie jak wielomiany Legendre’a, stopień wielomianu odzwierciedla ich parzy-
stość:

☞ dla parzystych n, wielomiany te zawierają wyłącznie wyrazy z parzystymi po-
tęgami, a zatem są funkcjami parzystymi

☞ dla nieparzystych n, wielomiany zawierają wyłacznie nieparzyste potęgi, a za-
tem są funkcjami nieparzystymi

☛ Relację rekurencyjną wyprowadziliśmy na zajęciach:

Hn+1(t) = 2tHn(t)− 2nHn−1(t)

☛ Różniczkując obustronnie wzór Rodriguesa otrzymamy również relację:

H ′n(t) = 2tHn(t)−Hn+1(t)

z czego łato wynika
H ′n(t) = 2nHn−1(t)

☛ Wielomiany Hermite’a są również przykładem funkcji ortogonalnych w bardzo
specyficznej przestrzeni. Nie wchodzac w szczegóły, spełniają one relację całkową:∫

R
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2
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☛ Jeśli chodzi o zasosowania fizyczne, wielomiany Hermite’a pojawiaj sie miedzy
innymi w kwantowym jednowymiarowym oscylatorze harmonicznym.

☛ Ponizsza grafika przedstawia pierwsze wielomiany Hermite’a
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Rysunek 4: Wykresy pierwszych wielomianow Hermite’a
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