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Petne obliczenia J;

Podczas zaje¢ przeszliSmy przez obliczenia, krok po kroku pokazujac co sie zmienia, ja-
kie przeksztalcenia stosujemy, niemniej chciatbym jeszcze raz przedstawié¢ to parnstwu, w
pelni.

Przypomnijmy, ze wiemy:
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gdyz obliczyliémy te warto$é¢ korzystajac z odpowiedniego podstawienia w calce oraz tri-
ku, polegajacego na wykorzystaniu wspotrzednych sferycznych. 7Z szeregu definiujacego
funkcje Bessela pierwszego rodzaju rzedu v:
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zatem, podstawiajac v = 1/2:
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Przechodzac do funkeji I'(n + 3/2) w mianowniku:
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Zauwazmy teraz, ze:
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Podstawiajac ten wynik do szeregu:
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z szerego Maclaurina.
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Podsumowanie informacji o funkcjach Bessela

@  Funkcje Bessela sa rozwiazaniami réwnania rézniczkowego:
2
Pttt (P =)z =0

@ Liczba rzeczywista v € R jest nazywana rzedem réwnania, a tym samym rzedem
rozwigzania.

& Rozwiazujac je poprzez podstawienie szeregu (w ¢ = 0, bedacym punktem regu-
larnym osobliwym réwnania), otrzymujemy funkcje pierwszego rodzaju:

- oo (_1)71 t 2n+v
Ju(t) = Z T(n+1)T(n+1+v) (2)
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& Jesli v ¢ Z, wowczas rozwigzania J, oraz J_, sa liniowo niezalezne, poniewaz dla
t — 0 otrzymujemy:

v>0 = limoJ,(t)

v :O
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Ogoélnym rozwigzaniem jest zatem:
z(t) = c1J,(t) + o, (1)

& W przypadku, gdy v € Z, otrzymujemy:

zatem potrzeba skonstruowaé drugie rozwiazanie. Okazuje si¢, ze jest nim:

Vo) — g B0 (1) = o0}

=V a% sin (77)

a rozwiazanie ma postac:

z(t) = a1, (t) + Y, (1)

& W przypadku nauk fizycznych, funkcje Bessela znajduja zastosowania w rozwiazy-
waniu problemoéw cylindrycznych lub sferycznych, na przyktad: drgania membrany
bebna czy opisywanie czestek kwantowomechanicznych w cylindrycznych studniach
potencjatu.

@&  Graficzne porownanie funkcji Bessela znajduje sie na grafikach ponizej

Wielomiany Hermite’a

Co prawda na zajeciach funkcje te pojawily sie wytacznie w obliczeniach z funkcji gene-
rujacej, jednak postanowitem przygotowaé krotka notatke rowniez na ich temat.

@ Rownaniem Hermite’a nazwiemy rownanie rozniczkowe:
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Rysunek 1: Funkcje Bessela pierwszego rodzaju dla catkowitych rzedow
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Rysunek 2: Funkcje Bessela pierwszego rodzaju dla niecatkowitych rzedow

Rysunek 3: Funkcje Bessela drugiego rodzaju

@  Wielomiany Hermite’a stopnia n sa rozwigzaniami wielomianowymi powyzszego



rownania. Mozna je uzyskaé¢ dzieki funkeji generujacej, poznanej na ¢wiczeniach:

jak réwniez ze wzoru Rodriguesa:
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@ Podobnie jak wielomiany Legendre’a, stopienn wielomianu odzwierciedla ich parzy-
stosc:

1 dla parzystych n, wielomiany te zawieraja wylacznie wyrazy z parzystymi po-
tegami, a zatem sa funkcjami parzystymi

1 dla nieparzystych n, wielomiany zawieraja wytacznie nieparzyste potegi, a za-
tem sa funkcjami nieparzystymi

@ Relacje rekurencyjna wyprowadziliémy na zajeciach:

Hyor (t) = 26H, (1) — 2nH, ()

@ Rozniczkujac obustronnie wzér Rodriguesa otrzymamy réwniez relacje:
H\(t) = 2tHy (1) — Hopa (1)

z czego tato wynika
H!(t) =2nH, (t)

@  Wiclomiany Hermite’a sa rowniez przyktadem funkcji ortogonalnych w bardzo
specyficznej przestrzeni. Nie wchodzac w szczegdty, spetniaja one relacje catkowa:

/ Ho () H(t)e dt = 27 1! /70
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@  Jesli chodzi o zasosowania fizyczne, wielomiany Hermite’'a pojawiaj sie miedzy
innymi w kwantowym jednowymiarowym oscylatorze harmonicznym.

@& Ponizsza grafika przedstawia pierwsze wielomiany Hermite’a
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Rysunek 4: Wykresy pierwszych wielomianow Hermite’a



